Laser-induced thermal effect on the electrical characteristics of photosensitive PbSe films
https://doi.org/10.17586/2226-1494-2024-24-1-30-40
Abstract
The paper presents a study of the effect of laser irradiation of crystalline chalcogenide films of lead selenide (PbSe) on their electrical characteristics caused by irreversible modification of the structure due to valence reconfiguration of lead as a result of its oxidation. The study of the modification features of the electrical properties of the films was carried out because of laser exposure to nanosecond pulses with a wavelength of 1064 nm. Measurements of the electrical characteristics of PbSe films were carried out using the four-probe method. It was shown that when the current was directed parallel to the laser tracks recorded in the darkening mode, the resistance of the modified film decreased by 44 % compared to the original sample, and with the perpendicular direction of the current, the resistance increased by 153 %. The resistance of the film increased more than 27 times after laser irradiation in the bleaching mode, regardless of the direction of the current relative to the laser tracks. The experimentally measured temperature and its gradient along the laser spot on the film in the darkening and bleaching modes turned out to be in good agreement with the proposed mathematical model of the thermal effect of laser pulses. It has been shown that the processes of laser modification of films occur at lower temperatures than during standard heat treatment in a furnace. The obtained results can be applied in the development of photodetectors in the middle IR range of the spectrum based on PbSe film.
Keywords
About the Authors
A. A. OlkhovaRussian Federation
Anastasiia A. Olkhova — PhD Student, Junior Researcher
Saint Petersburg, 197101
sc 57814489800
A. A. Patrikeeva
Russian Federation
Alina A. Patrikeeva — Student, Engineer
Saint Petersburg, 197101
sc 57815254200
M. A. Butyaeva
Russian Federation
Maria A. Butyaeva — Student, Engineer
Saint Petersburg, 197101
sc 58125613000
A. E. Pushkareva
Russian Federation
Alexandra E. Pushkareva — PhD, Leading Engineer
Saint Petersburg, 197101
sc 12791000500
M. K. Moskvin
Russian Federation
Mikhail K. Moskvin — Junior Researcher
Saint Petersburg, 197101
sc 57194008858
M. M. Sergeev
Russian Federation
Maksim M. Sergeev — PhD, Associate Professor, Senior
Researcher
Saint Petersburg, 197101
sc 55624732300
V. P. Veiko
Russian Federation
Vadim P. Veiko — D.Sc., Full Professor
Saint Petersburg, 197101
sc 7005095644
References
1. Tan C.L., Mohseni H. Emerging technologies for high performance infrared detectors // Nanophotonics. 2018. V. 7. N 1. P. 169–197. https://doi.org/10.1515/nanoph-2017-0061
2. Karim A., Andersson J.Y. Infrared detectors: Advances, challenges and new technologies // IOP Conference Series: Materials Science and Engineering. 2013. V. 51. N 1. P. 012001. https://doi.org/10.1088/1757-899x/51/1/012001
3. Kasiyan V., Dashevsky Z., Schwarz C.M., Shatkhin M., Flitsiyan E., Chernyak L., Khokhlov D. Infrared detectors based on semiconductor p-n junction of PbSe // Journal of Applied Physics. 2012. V. 112. N 8. P. 086101. https://doi.org/10.1063/1.4759011
4. Weng B., Qiu J., Yuan Z., Larson P.R., Strout G.W., Shi Z. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings // Applied Physics Letters. 2014. V. 104. N 2. P. 021109. https://doi.org/10.1063/1.4861186
5. Tomaev V.V., Egorov S.V., Stoyanova T.V. Investigation into the photosensitivity of a composite from lead selenide and selenite in UV region of spectrum. Glass Physics and Chemistry, 2014, vol. 40, no. 2, pp. 208–214. https://doi.org/10.1134/s1087659614020229
6. Alekseeva G.T., Gurieva E.A., Konstantinov P.P., Prokofeva L.V., Fedorov M.I. Thermoelectric figure of merit of hetero- and isovalently doped PbSe // Semiconductors. 1996. V. 30. N 12. P. 1125–1127.
7. Avery D.G., Goodwin D.W., Lawson W.D., Moss T.S. Optical and photo-electrical properties of indium antimonide // Proceedings of the Physical Society. Section B. 1954. V. 67. N 10. P. 761. https://doi.org/10.1088/0370-1301/67/10/304
8. Paul W., Jones D.A., Jones R.V. Infra-Red Transmission of Galena // Proceedings of the Physical Society. Section B. 1951. V. 64. N 6. P. 528. https://doi.org/10.1088/0370-1301/64/6/109
9. Gibson A.F. The absorption spectra of single crystals of lead sulphide, selenide and telluride // Proceedings of the Physical Society. Section B. 1952. V. 65. N 7. P. 555. https://doi.org/10.1088/0370-1301/65/7/516
10. Humphrey J.N., Scanlon W.W. Photoconductivity in lead selenide. Experimental // Physical Review. 1957. V. 105. N 2. P. 469–476. https://doi.org/10.1103/physrev.105.469
11. Danilov E.A., Veretennikov M., Dronova M., Kalyakin T., Stepashkin A.A., Tcherdyntsev V.V., Samoilov V. Simple route to increase electrical conductivity and optical transmittance in graphene/ silver nanoparticles hybrid suspensions // Applied Sciences. 2023. V. 13. N 3. P. 1922. https://doi.org/10.3390/app13031922
12. Nepomnjashchij S.V., Pogodina S.B. Method of making lead selenide-based semiconductor structure. Patent RU 2493632 C1. 2013. (in Russian)
13. Kolobov A.V., Tominaga J. Chalcogenide glasses in optical recording: recent progress // Journal of Optoelectronics and Advanced Materials. 2002. V. 4. N 3. P. 679–686.
14. Olkhova A.A., Patrikeeva A.A., Sergeev M.M. Electrical and optical properties of laser-induced structural modifications in PbSe films // Applied Sciences. 2022. V. 12. N 19. P. 10162. https://doi.org/10.3390/app121910162
15. Silverman S.J., Levinstein H. Electrical properties of single crystals and thin films of PbSe and PbTe // Physical Review. 1954. V. 94. N 4. P. 871–876. https://doi.org/10.1103/physrev.94.871
16. Ahmed R., Gupta M.C. Mid-infrared photoresponse of electrodeposited PbSe thin films by laser processing and sensitization // Optics and Lasers in Engineering. 2020. V. 134. P. 106299. https://doi.org/10.1016/j.optlaseng.2020.106299
17. Veiko V.P., Kieu K.K. Laser amorphisation of glass ceramics: basic properties and new possibilities for manufacturing microoptical elements. Quantum Electronics, 2007, vol. 37, no. 1, pp. 92–98. https://doi.org/10.1070/qe2007v037n01abeh008992
18. Voznyi A., Kosyak V., Onufrijevs P., Grase L., Vecstaudža J., Opanasyuk A., Medvid’ A. Laser-induced SnS2-SnS phase transition and surface modification in SnS2 thin films // Journal of Alloys and Compounds. 2016. V. 688. Part B. P. 130–139. https://doi.org/10.1016/j.jallcom.2016.07.103
19. Miyamoto I., Horn A., Gottmann J., Wortmann D., Yoshino F. Fusion welding of glass using femtosecond laser pulses with high-repetition rates // Journal of Laser Micro/Nanoengineering. 2007. V. 2. N 1. P. 57–63. https://doi.org/10.2961/jlmn.2007.01.0011
Review
For citations:
Olkhova A.A., Patrikeeva A.A., Butyaeva M.A., Pushkareva A.E., Moskvin M.K., Sergeev M.M., Veiko V.P. Laser-induced thermal effect on the electrical characteristics of photosensitive PbSe films. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2024;24(1):30-40. (In Russ.) https://doi.org/10.17586/2226-1494-2024-24-1-30-40