Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

The impact of yttrium aluminum garnet stoichiometry deviation on the conversion efficiency of tetravalent chromium ions

https://doi.org/10.17586/2226-1494-2022-22-5-912-920

Abstract

In this work, the conversion efficiency of Cr4+ ions and the optical properties of ceramics based on chromium-doped yttrium aluminum garnet were investigated. Increasing the conversion efficiency of Cr3+ to Cr4+ opens up broad prospects for using YAG ceramics as saturable absorbers for passive Q-switching of Nd- and Yb-solid-state lasers. The aim of this work was to study the effect of magnesium oxide concentration on the conversion efficiency of Cr3+ to Cr4+ under conditions of Al3+ (4.8 mol.%) and Y3+ (2.9 mol.%) cations excess in the garnet structure as well as the stoichiometric ratio Y3+/Al3+ = 3/5. The possibility of changing the concentration of Cr4+ ions in both the octahedral and tetrahedral positions due to the formation of magnesium substitution defects when the composition deviates from the yttrium-aluminum garnet stoichiometry has been studied. Chromium-doped transparent optical ceramics based on yttrium-aluminum garnet with different ratios of Y3+/Al3+ cations was obtained by the two-stage coprecipitation method. Magnesium oxide was used as a sintering additive and charge compensator for converting chromium ions from the trivalent to the tetravalent state in concentrations of 0 to 0.2 wt.%. It was found that aluminum excess in the yttriumaluminum garnet matrix leads to a decrease in the Cr3+ to Cr4+ conversion efficiency. A deviation of stoichiometry towards an excess of yttrium leads to a decrease of air annealing temperature for oxidizing chromium ions to the tetravalent state and their transition to the tetrahedral position. However, the samples optical transmittance with an excess of yttrium was lower than in the cases of an excess of aluminum and stoichiometry. It was found that with an increase in the vacuum sintering temperature from 1780 to 1820 °C in the samples with an excess of aluminum, an increase in the concentration of Cr4+ ions in the tetrahedral position occurs, as evidenced by higher absorption intensity at a wavelength of 1030 nm. For the cases of stoichiometry and an excess of yttrium in garnet, this effect is less pronounced. Samples of optical ceramics of yttrium-aluminum garnet with a light transmission of more than 75 % in the visible and near-IR ranges with pronounced absorption bands of chromium have been obtained. The results of the work can be applied to the creation of passive switches for solid-state lasers.

About the Authors

F. F. Malyavin
North-Caucasus Federal University
Russian Federation

Fedor F. Malyavin — Head of Laboratory

Stavropol, 355009

sc 55748614600



A. A. Kravtsov
North-Caucasus Federal University; Federal Research Center of the Southern Scientific Centre of the Russian Academy of Sciences
Russian Federation

Alexander A. Kravtsov — PhD, Senior Researcher

Stavropol, 355009

Rostov-on-Don, 344006

sc 57191056680



V. A. Tarala
North-Caucasus Federal University
Russian Federation

Vitaly A. Tarala — PhD (Chemistry), Head of Laboratory Complex

Stavropol, 355009

sc 36873277700



I. S. Chikulina
North-Caucasus Federal University
Russian Federation

Irina S. Chikulina — Head of Laboratory

Stavropol, 355009

sc 57204186833



D. S. Vakalov
North-Caucasus Federal University
Russian Federation

Dmitry S. Vakalov — PhD (Physics & Mathematics), Head of Laboratory

Stavropol, 355009

sc 57204185431



V. A. Lapin
North-Caucasus Federal University; Federal Research Center of the Southern Scientific Centre of the Russian Academy of Sciences
Russian Federation

Viacheslav A. Lapin — PhD, Senior Researcher; Scientific Researcher

Stavropol, 355009

Rostov-on-Don, 344006

sc 55748317300



M. S. Nikova
North-Caucasus Federal University
Russian Federation

Marina S. Nikova — PhD, Engineer

Stavropol, 355009

sc 57214126664



S. E. Khoroshilova
North-Caucasus Federal University
Russian Federation

Svetlana E. Khoroshilova — PhD (Chemistry), Leading Researcher

Stavropol, 355009

sc 23990875300



E. V. Medyanik
North-Caucasus Federal University
Russian Federation

Evgenii V. Medyanik — Leading Engineer

Stavropol, 355009

sc 57204793700



D. S. Kuleshov
North-Caucasus Federal University
Russian Federation

Dmitry S. Kuleshov — Engineer

Stavropol, 355009

sc 55748259500



References

1. Dong J., Ueda K., Shirakawa A., Yagi H., Yanagitani T., Kaminskii A. Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers. Optics Express, 2007, vol. 15, no. 22, pp. 14516–14523. https://doi.org/10.1364/OE.15.014516

2. Kalisky Y. Cr4+-doped crystals: Their use as lasers and passive Q-switches. Progress in Quantum Electronics, 2004, vol. 28, no. 5, pp. 249–303. https://doi.org/10.1016/j.pquantelec.2004.09.001

3. Kalisky Y., Kravchik L., Kokta M. Performance of diode-end-pumped Cr4+, Nd3+:YAG self-Q-switched and Nd:YAG/Cr4+:YAG diffusion bonded lasers. Optical Materials, 2004, vol. 24, no. 4, pp. 607–614. https://doi.org/10.1016/S0925-3467(03)00163-0

4. Dong J., Deng P. Laser performance of monolithic Cr,Nd:YAG selfQ-switched laser. Optics Communications, 2003, vol. 220, no. 4–6, pp. 425–431. https://doi.org/10.1016/S0030-4018(03)01450-0

5. Dong J., Ueda K., Yagi H., Kaminskii A. Laser-diode pumped selfQ-switched microchip lasers. Optical Review, 2008, vol. 15, no. 2, pp. 57–74. https://doi.org/10.1007/S10043-008-0010-3

6. Ikesue A., Yoshida K., Kamata K. Transparent Cr4+-doped YAG ceramics for tunable lasers. Journal of the American Ceramic Society, 1996, vol. 79, no. 2, pp. 507–509. https://doi.org/10.1111/j.1151-2916.1996.tb08154.x

7. Li J., Wu Y., Pan Y., Guo J. Fabrication of Cr4+,Nd3+:YAG transparent ceramics for self-Q-switched laser. Journal of Non-Crystalline Solids, 2006, vol. 352, no. 23–25, pp. 2404–2407. https://doi.org/10.1016/j.jnoncrysol.2006.02.062

8. Kong L.B., Huang Y., Que W., Zhang T., Li S., Zhang J., Dong Z., Tang D. Transparent Ceramics. Springer Cham, 2015, 734 p. Topics in Mining, Metallurgy and Materials Engineering. https://doi.org/10.1007/978-3-319-18956-7

9. Zhou T., Zhang L., Li Z., Wei S., Wu J., Wang L., Yang H., Fu Z., Chen H., Wong C., Zhang Q. Enhanced conversion efficiency of Cr4+ ion in Cr: YAG transparent ceramic by optimizing the annealing process and doping concentration. Journal of Alloys and Compounds, 2017, vol. 703, pp. 34–39. https://doi.org/10.1016/j.jallcom.2017.01.338

10. Yagi H., Takaichi K., Ueda K., Yanagitani T., Kaminskii A. Influence of annealing conditions on the optical properties of chromium-doped ceramic Y3Al5O12. Optical Materials, 2006, vol. 29, no. 4, pp. 392–396. https://doi.org/10.1016/j.optmat.2005.08.035

11. Chaika M., Paszkowicz W., Strek W., Hreniak D., Tomala R., Safronova N., Doroshenko A., Parkhomenko S., Dluzewski P., Kozłowski M., Vovk O. Influence of Cr doping on the phase composition of Cr,Ca:YAG ceramics by solid state reaction sintering. Journal of the American Ceramic Society, 2019, vol. 102, no. 4, pp. 2104–2115. https://doi.org/10.1111/jace.16024

12. Chaika M., Tomala R., Strek W., Hreniak D., Dluzewski P., Morawiec K., Mateychenko P., Fedorov A., Doroshenko A., Parkhomenko S., Lesniewska-Matys K., Podniesinski D., Kozłowska A., Mancardi G., Vovk O. Kinetics of Cr3+ to Cr4+ ion valence transformations and intra-lattice cation exchange of Cr4+ in Cr,Ca:YAG ceramics used as laser gain and passive Q-switching media. Journal of Chemical Physics, 2019, vol. 151, no. 13, pp. 134708. https://doi.org/10.1063/1.5118321

13. Feldman R., Shimony Y., Burshtein Z. Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media. Optical Materials, 2003, vol. 24, no. 1–2, pp. 333–344. https://doi.org/10.1016/S0925-3467(03)00146-0

14. Boulesteix R., Perrière C., Maître A., Chrétien L., Brenierd A., Guyotd Y. Fabrication of YAG/Cr:YAG transparent composite ceramics and characterization by light sheet fluorescence imaging. Optical Materials, 2019, vol. 96, pp. 109324. https://doi.org/10.1016/j.optmat.2019.109324

15. Zhou T., Zhang L., Yang H., Qiao X., Liu P., Tang D., Zhang J. Effects of sintering AIDS on the transparency and conversion efficiency of Cr4+ ions in Cr: YAG transparent ceramics. Journal of the American Ceramic Society, 2015, vol. 98, no. 8, pp. 2459–2464. https://doi.org/10.1111/jace.13616

16. Zhou T., Zhang L., Shao C., Sun B., Bu W., Yang H., Chen H., Selimd F.A., Zhang Q. Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics. Ceramics International, 2018, vol. 44, no. 12, pp. 13820–13826. https://doi.org/10.1016/j.ceramint.2018.04.226

17. Chaika M.A., Mancardi G., Vovk O.M. Influence of CaO and SiO2 additives on the sintering behavior of Cr,Ca:YAG ceramics prepared by solid-state reaction sintering. Ceramics International, 2020, vol. 46, no. 14, pp. 22781–22786. https://doi.org/10.1016/j.ceramint.2020.06.045

18. Chaika M.A., Dulina N.A., Doroshenko A.G., Parkhomenko S.V., Gayduk O.V., Tomala R., Strek W., Hreniak D., Mancardi G., Vovka O.M. Influence of calcium concentration on formation of tetravalent chromium doped Y3Al5O12 ceramics. Ceramics International, 2018, vol. 44, no. 12, pp. 13513–13519. https://doi.org/10.1016/j.ceramint.2018.04.182

19. Chaika M.A., Dluzewski P., Morawiec K., Szczepansk A., Jablonska K., Mancardi G., Tomala R., Hreniak D., Strek W., Safronova N.A., Doroshenko A.G., Parkhomenko S.V., Vovk O.M. The role of Ca2+ ions in the formation of high optical quality Cr4+,Ca:YAG ceramics. Journal of the European Ceramic Society, 2019, vol. 39, no. 11, pp. 3344–3352. https://doi.org/10.1016/j.jeurceramsoc.2019.04.037

20. Bezotosnyi V.V., Kanaev A.Yu., Kopylov Yu.L., Koromyslov A.L., Lopukhin K.V., Tupitsyn I. M., Cheshev E.A. Influence of CaO/MgO ratio on Cr3+ to Cr4+ conversion efficiency in YAG:Cr4+ ceramic saturable absorbers. Optical Materials, 2020, vol. 100, pp. 109671. https://doi.org/10.1016/j.optmat.2020.109671

21. Chen X., Wu Y., Lu Z., Wei N., Qi J., Shi J., Hua T., Zeng Q., Guo W., Lu T. Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr:YAG ceramic for edge cladding. Journal of the American Ceramic Society, 2018, vol. 101, no. 11, pp. 5098–5109. https://doi.org/10.1111/jace.15764

22. Chen X., Lu T., Wei N., Lu Z., Chen L., Zhang Q., Cheng G., Qi J. Fabrication and photoluminescence properties of Cr:YAG and Yb,Cr:YAG transparent ceramic. Optical Materials, 2015, vol. 49, pp. 330–336. https://doi.org/10.1016/j.optmat.2015.09.022

23. Doroshenko A.G., Yavetskiy R.P., Parkhomenko S.V., Vorona I.O., Kryzhanovska O.S., Mateychenko P.V., Tolmachev A.V., Vovk E.A., Bovda V.A., Croitoru G., Gheorghe L. Effect of the sintering temperature on the microstructure and optical properties of YAG:Cr,Mg ceramics. Optical Materials, 2019, vol. 98, pp. 109505. https://doi.org/10.1016/j.optmat.2019.109505

24. Kravtsov A.A., Nikova M.S., Vakalov D.S., Tarala V.A., Chikulina I.S., Malyavin F.F., Chapura O.M., Krandievsky S.O., Kuleshov D.S., Lapin V.A. Combined effect of MgO sintering additive and stoichiometry deviation on YAG crystal lattice defects. Ceramics International, 2019, vol. 45, no. 16, pp. 20178–20188. https://doi.org/10.1016/j.ceramint.2019.06.287

25. Malyavin F.F., Kravtsov A.A., Tarala V.A., Nikova M.S., Chikulina I.S., Vakalov D.S., Lapin V.A., Kuleshov D.S., Medyanik E.V. Impact of magnesium oxide concentration and yttrium-aluminum garnet stoichiometry deviation on the microstructure and optical transmission of yag-based ceramics. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, vol. 21, no. 6, pp. 872–879. (in Russian). https://doi.org/10.17586/2226-1494-2021-21-6-872-879

26. Kravtsov A.A., Chikulina I.S., Tarala V.A., Evtushenko E.A., Shama M.S., Tarala L.V., Malyavin F.F., Vakalov D.S., Lapin V.A., Kuleshov D.S. Novel synthesis of low-agglomerated YAG:Yb ceramic nanopowders by two-stage precipitation with the use of hexamine. Ceramics International, 2019, vol. 45, no. 1, pp. 1273–1282. https://doi.org/10.1016/j.ceramint.2018.10.010

27. Malyavin F.F., Tarala V.A., Kuznetsov S.V., Kravtsov A.A., Chikulina I.S., Shama M.S., Medyanik E.V., Ziryanov V.S., Evtushenko E.A., Vakalov D.S., Lapin V.A., Kuleshov D.S., Tarala L.V., Mitrofanenko L.M. Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics. Ceramics International, 2019, vol. 45, no. 4, pp. 4418–4423. https://doi.org/10.1016/j.ceramint.2018.11.119

28. Chen X., Lu Z., Hu M., Chang H., Duan Y., Fang J., Lu T., Wei N., Wu Y., Guo W. Investigation of the structure, optical properties and Cr4+ conversion level of Yb3+ and Cr3+ codoped YAG transparent ceramics. Optical Materials, 2020, vol. 109, pp. 110406. https://doi.org/10.1016/j.optmat.2020.110406

29. Wu Y., Li J., Qiu F., Pan Y., Liu Q., Guo J. Fabrication of transparent Yb,Cr:YAG ceramics by a solid-state reaction method. Ceramics International, 2006, vol. 32, no. 7, pp. 785–788. https://doi.org/10.1016/j.ceramint.2005.06.002


Review

For citations:


Malyavin F.F., Kravtsov A.A., Tarala V.A., Chikulina I.S., Vakalov D.S., Lapin V.A., Nikova M.S., Khoroshilova S.E., Medyanik E.V., Kuleshov D.S. The impact of yttrium aluminum garnet stoichiometry deviation on the conversion efficiency of tetravalent chromium ions. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(5):912-920. (In Russ.) https://doi.org/10.17586/2226-1494-2022-22-5-912-920

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)