Preview

Научно-технический вестник информационных технологий, механики и оптики

Расширенный поиск

Обнаружения выбоин на дорожных покрытиях с использованием методов фотограмметрии и дистанционного зондирования (обзор)

https://doi.org/10.17586/2226-1494-2022-22-3-459-471

Аннотация

Приведен обзор методов получения двухмерных (2D) и трехмерных (3D) моделей дефектов на дорожном покрытии. На целостность дорожного покрытия могут влиять такие факторы, как температура, влажность, атмосферные воздействия и нагрузки. Один из самых распространенных видов разрушения дорожного покрытия выбоины, которые являются признаками структурных разрушений асфальтовой дороги. Процесс сбора и анализа данных имеет решающее значение при обслуживании дорожного покрытия. Обнаружение и количественная оценка информации о геометрии выбоин необходима для понимания прогноза работ по содержанию дорог и для определения правильных стратегий ухода за асфальтовым покрытием. Визуальное обнаружение дорожных дефектов дорогостоящее и трудоемкое. В настоящее время в научных работах представлены многочисленные исследования, показывающие способы автоматического обнаружения и распознавания выбоин. В настоящей работе рассмотрены методы автоматического обнаружения и классификации выбоин с использованием инструментальных средств — датчиков, интегрированных с системой позиционирования. Техника обработки 2D-изображений с использованием методов машинной классификации позволяет определить и уточнить геометрию выбоины. Для повышения точности обработки изображений и выделения краев выбоин применяются такие алгоритмические методы как искусственные нейронные сети, деревья решений, методы опорных векторов и нечеткой классификации. 3D-модель выбоины может быть получена на основе данных лазерного сканирования и методов фотограмметрии. В работе обобщены различные методы и предложенная техника для извлечения 3D-модели выбоины. Результаты работы могут найти применение для улучшения инфраструктуры обслуживания дорожных покрытий.

Об авторах

Ш. Н. Абд Мукти
Администрация Куала-Лумпура
Малайзия

Абд Мукти Шахрул Низан — PhD, старший геодезист

Куала-Лумпур, 50350



Х. Н. Тахар
Технологический университет MARA (UiTM)
Малайзия

Тахар Хайрул Низам — PhD, доцент

Шах-Алам, 40450

sc 38362352000



Список литературы

1. Buza E., Omanovic S., Huseinovic A. Pothole detection with image processing and spectral clustering. Proc. of the 2nd International Conference on Information Technology and Computer Networks (ITCN ‘13), 2013.

2. Cao W., Liu Q., He Z. Review of pavement defect detection methods. IEEE Access, 2020, vol. 8, pp. 14531–14544. https://doi.org/10.1109/ aCCESS.2020.2966881

3. Kim T., Ryu S.-K. Review and analysis of pothole detection methods. Journal of Emerging Trends in Computing and Information Sciences, 2014, vol. 5, no. 8, pp. 603–608.

4. Sarie F., Bisri M., Wicaksono A., Effendi R. Types of road pavement damage for road on peatland, a study case in Palangka Raya, Central Kalimantan, Indonesia. Journal of Environmental Science, Toxicology and Food Technology, 2015, vol. 9, no. 12, pp. 53–59. https://doi.org/10.9790/2402-091235359

5. Wang H.-W., Chen C.-H., Cheng D.-Y., Lin C.-H., Lo C.-C. A realtime pothole detection approach for intelligent transportation system. Mathematical Problems in Engineering, 2015, vol. 2015, pp. 869627. https://doi.org/10.1155/2015/869627

6. Mednis A., Strazdins G., Zviedris R., Kanonirs G., Selavo L. Real time pothole detection using Android smartphones with accelerometers. Proc. of the 7th International Conference on

7. Distributed Computing in Sensor Systems and Workshops (DCOSS), 2011, pp. 86376. https://doi.org/10.1109/DCOSS.2011.5982206 7. Gunawan F.E. Detecting road damages by using gyroscope sensor. ICIC Express Letters, 2018, vol. 12, no. 11, pp. 1089–1098. https:// doi.org/10.24507/icicel.12.11.1089

8. Jamakhandi H.A., Srinivasa K.G. Internet of Things based real time mapping of road irregularities. Proc. of International Conference on Circuits, Communication, Control and Computing (I4C), 2014, pp. 448–451 https://doi.org/10.1109/CIMCA.2014.7057842

9. Lei T., Mohamed A.A., Claudel C. An IMU-based traffic and road condition monitoring system. HardwareX, 2018, vol. 4, pp. e00045. https://doi.org/10.1016/j.ohx.2018.e00045

10. Strazdins G., Mednis A., Kanonirs G., Zviedris R., Selavo L. Towards vehicular sensor networks with android smartphones for road surface monitoring. The Second International Workshop on Networks of Cooperating Objects (CONET’11), Electronic Proceedings of CPSWeek’11, 2011, pp. 1-4.

11. Rau J.Y., Hsiao K.W., Jhan J.P., Wang S.H., Fang W.C., Wang J.L. Bridge crack detection using multi-rotary UAV and object-base image analysis. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2017, vol. 42, no. 2W6, pp. 311–318. https://doi.org/10.5194/isprs-archivesXLII-2-W6-311-2017

12. Eriksson J., Girod L., Hull B., Newton R., Madden S., Balakrishnan H. The Pothole Patrol: Using a mobile sensor network for road surface monitoring. MobiSys’08 — Proc. of the 6th International Conference on Mobile Systems, Applications, and Services, 2008, pp. 29–39. https://doi.org/10.1145/1378600.1378605

13. Chambon S., Moliard J.M. Automatic road pavement assessment with image processing: Review and comparison. International Journal of Geophysics, 2011, vol. 2011, pp. 989354. https://doi.org/10.1155/2011/989354

14. Pan Y., Zhang X., Cervone G., Yang L. Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, vol. 11, no. 10, pp. 3701–3712. https://doi.org/10.1109/JSTARS.2018.2865528

15. Li M., Zang S., Zhang B., Li S., Wu C. A review of remote sensing image classification techniques: The role of Spatio-contextual information. European Journal of Remote Sensing, 2014, vol. 47, no. 1, pp. 389–411. https://doi.org/10.5721/EuJRS20144723

16. Qingju T., Jingmin D.A., Chunsheng L.I.U., Yuanlin L.I.U., Chunping R. Study on defects edge detection in infrared thermal image based on ant colony algorithm. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, vol. 9, no. 4, pp. 121–130. http://dx.doi.org/10.14257/ijsip.2016.9.4.11

17. Luo Z.M., Wen J. The image segmentation algorithm of region growing and Wavelet Transform Modulus Maximum. Proc. of the 5th International Conference on Instrumentation and Measurement, Computer, Communication, and Control (IMCCC), 2015, pp. 1171–1174. https://doi.org/10.1109/IMCCC.2015.251

18. Sultani W., Mokhtari S., Yun H. Automatic pavement object detection using superpixel segmentation combined with conditional random field. IEEE Transactions on Intelligent Transportation Systems, 2018, vol. 19, no. 7, pp. 2076–2085. https://doi.org/10.1109/TITS.2017.2728680

19. Koch C., Jog G.M., Brilakis I. Automated pothole distress assessment using asphalt pavement video data. Journal of Computing in Civil Engineering, 2013, vol. 27, no. 4, pp. 370–378. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000232

20. Koch C., Brilakis I. Pothole detection in asphalt pavement images. Advanced Engineering Informatics, 2011, vol. 25, no. 3, pp. 507–515. https://doi.org/10.1016/j.aei.2011.01.002

21. Huang W., Zhang N. A novel road crack detection and identification method using digital image processing techniques. Proc. of the 7th International Conference on Computing and Convergence Technology (ICCCT), 2012, pp. 397–400.

22. Gao M., Wang X., Zhu S., Guan P. Detection and segmentation of cement concrete pavement pothole based on image processing technology. Mathematical Problems in Engineering, 2020, pp. 1360832. https://doi.org/10.1155/2020/1360832

23. Paul A., Yang C., Breitkopf U., Liu Y., Wang Z., Rottensteiner F., Wallner M., Verworn A., Heipke C. Automatic classification of aerial imagery for urban hydrological applications // International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2018, vol. 42, no. 3, pp. 1355–1362. https://doi.org/10.5194/isprs-archives-XLII-3-1355-2018

24. Maas A., Alrajhi M., Alobeid A., Heipke C. Automatic classification of high resolution satellite imagery – A case study for urban areas in the Kingdom of Saudi Arabia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2017, vol. 42, no. 1W1, pp. 11–16. https://doi.org/10.5194/isprs-archives-XLII-1-W1-11-2017

25. Jabari S., Fathollahi F., Zhang Y. Application of sensor fusion to improve UAV image classification. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2017, vol. 42, no. 2W6, pp. 153–156. https://doi.org/10.5194/isprs-archives-XLII-2-W6-153-2017

26. Jawak S.D., Wankhede S.F., Luis A.J. Comparison of pixel and object-based classification techniques for glacier facies extraction. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2018, vol. 42, no. 5, pp. 543–548. https://doi.org/10.5194/isprs-archives-xlii-5-543-2018

27. Verma A.K., Garg P.K., Prasad K.S.H., Dadhwal V.K. Classification of LISS IV imagery using decision tree methods. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2016, vol. 41, pp. 1061–1066. https://doi.org/10.5194/isprsarchives-XLI-B8-1061-2016

28. Saini R., Ghosh S.K. Crop classification on single date sentinel-2 imagery using random forest and suppor vector machine. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2018, vol. 42, no. 5, pp. 683–688. https://doi.org/10.5194/isprs-archives-xlii-5-683-2018

29. Shaharum N.S.N., Shafri H.Z.M., Ghani W.A.W.A., Samsatli S., Yusuf B., Al-Habshi M.M.A., Prince H.M. Image classification for mapping oil palm distribution via support vector machine using scikitlearn module. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2018, vol. 42, no. 4/W9, pp. 139–145. https://doi.org/10.5194/isprsarchives-XLII-4-W9-133-2018

30. Kamavisdar P., Saluja S., Agrawal S. A survey on image classification approaches and techniques. International Journal of Advanced Research in Computer and Communication Engineering, 2013, vol. 2, no. 1, pp. 1005–1009.

31. Abdellatif M., Peel H., Cohn A.G., Fuentes R. Hyperspectral imaging for autonomous inspection of road pavement defects. Proc. of the 36th International Symposium on Automation and Robotics in Construction (ISARC), 2019, pp. 384–392. https://doi.org/10.22260/isarc2019/0052

32. Jengo C.M., Hughes D., LaVeigne J.D., Curtis I. Pothole detection and road condition assessment using hyperspectral imager. Proc. of the Annual Conference “Geospatial Goes Global: From Your Neighborhood to the Whole Planet”, 2005, pp. 461–473.

33. Branco L.H.C., Segantine P.C.L. MaNIAC-UAV — A methodology for automatic pavement defects detection using images obtained by Unmanned Aerial Vehicles. Journal of Physics: Conference Series, 2015, vol. 633, no. 1, pp. 012122. https://doi.org/10.1088/1742-6596/633/1/012122

34. Herold M., Roberts D., Smadi O., Noronh V. Road condition mapping with hyperspectral remote sensing. Available at: https://www.ugpti.org/smartse/research/citations/downloads/Herold-Road_Condition_Mapping_with_HSI-2004.pdf (accessed: 30.12.2021)

35. Pascucci S., Bassani C., Palombo A., Poscolieri M., Cavalli R. Road asphalt pavements analyzed by airborne thermal remote sensing: Preliminary results of the venice highway. Sensors, 2008, vol. 8, no. 2, pp. 1278–1296. https://doi.org/10.3390/s8021278

36. Shahi K., Shafri H.Z.M., Taherzadeh E., Mansor S., Muniandy R. A novel spectral index to automatically extract road networks from WorldView-2 satellite imagery. Egyptian Journal of Remote Sensing and Space Science, 2015, vol. 18, no. 1, pp. 27–33. https://doi.org/10.1016/j.ejrs.2014.12.003

37. Pan Y., Zhang X., Sun M., Zhao Q. Object-based and supervised detection of potholes and cracks from the pavement images acquired by UAV. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2017, vol. 42, no. 4W4, pp. 209–217. https://doi.org/10.5194/isprs-archivesXLII-4-W4-209-2017

38. Resende M.R., Bernucci L.L.B., Quintanilha J.A. Monitoring the condition of roads pavement surfaces: proposal of methodology using hyperspectral images. Journal of Transport Literature, 2014, vol. 8, no. 2, pp. 201–220. https://doi.org/10.1590/s2238-10312014000200009

39. Raziq A., Xu A., Li Y., Zhao X. Extraction of urban road network from multispectral images using multivariate kernel statistic and segmentation method. Geoinformatics & Geostatistics: An Overview, 2017, vol. 5, no. 1. https://doi.org/10.4172/2327-4581.1000158

40. Caltagirone L., Bellone M., Svensson L., Wahde M. LiDAR–camera fusion for road detection using fully convolutional neural networks. Robotics and Autonomous Systems, 2019, vol. 111, pp. 125–131. https://doi.org/10.1016/j.robot.2018.11.002

41. Kumar P., Angelats E. An automated road roughness detection from mobile laser scanning data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2017, vol. 42, no. 1W1, pp. 91–96. https://doi.org/10.5194/isprs-archives-XLII-1-W1-91-2017

42. Walters R.C., Jaselskis E. Using scanning lasers for real-time pavement thickness measurement. Proc. of the 2005 ASCE International Conference on Computing in Civil Engineering, 2005, pp. 375–385. https://doi.org/10.1061/40794(179)36

43. Yu S.J., Sukumar S.R., Koschan A.F., Page D.L., Abidi M.A. 3D reconstruction of road surfaces using an integrated multi-sensory approach. Optics and Lasers in Engineering, 2007, vol. 45, no. 7, pp. 808–818. https://doi.org/10.1016/j.optlaseng.2006.12.007

44. Li Q., Yao M., Yao X., Yu W., Xu B. A real-time 3D scanning system for pavement rutting and pothole detections. Proceedings of SPIE, 2009, vol. 7447, pp. 74470B. https://doi.org/10.1117/12.824559

45. Mathavan S., Kamal K., Rahman M. A review of three-dimensional imaging technologies for pavement distress detection and measurements. IEEE Transactions on Intelligent Transportation Systems, 2015, vol. 16, no. 5, pp. 2353–2362. https://doi.org/10.1109/TITS.2015.2428655

46. Zhang C., Elaksher A. 3D Reconstruction from UAV-acquired Imagery for Road Surface Distress Assessment. Proc. of the 31st Asian Conference on Remote Sensing (ACRS), 2010, pp. 386–391.

47. Zhang A., Wang K.C.P., Li B., Yang E., Dai X., Peng Y., Fei Y., Liu Y., Li J.Q., Chen C. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Computer-Aided Civil and Infrastructure Engineering, 2017, vol. 32, no. 10, pp. 805–819. https://doi.org/10.1111/mice.12297

48. Kertesz I., Lovas T., Barsi A. Measurement of road roughness by low-cost photogrammetric system. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2007, vol. 36, no. 5/C55, pp. 4.

49. Hou Z., Wang K.C.P., Gong W. Experimentation of 3D pavement imaging through stereovision. Proc. of the International Conference on Transportation Engineering (ICTE), 2007, pp. 376–381. https://doi.org/10.1061/40932(246)62

50. El Gendy A., Shalaby A., Saleh M., Flintsch G.W. Stereo-vision applications to reconstruct the 3D texture of pavement surface. International Journal of Pavement Engineering, 2011, vol. 12, no. 3, pp. 263–273. https://doi.org/10.1080/10298436.2010.546858

51. Yu X., Salari E. Pavement pothole detection and severity measurement using laser imaging. Proc. of the IEEE International Conference on Electro Information Technology, 2011, pp. 5978573. https://doi.org/10.1109/EIT.2011.5978573

52. Jokela M., Kutila M., Le L. Road condition monitoring system based on a stereo camera. Proc. of the IEEE 5th International Conference on Intelligent Computer Communication and Processing (ICCP), 2009, pp. 423–428. https://doi.org/10.1109/ICCP.2009.5284724

53. Tan Y., Li Y. UAV photogrammetry-based 3D road distress detection. ISPRS International Journal of Geo-Information, 2019, vol. 8, no. 9, pp. 409. https://doi.org/10.3390/ijgi8090409

54. Ragnoli A., de Blasiis M.R., Di Benedetto A. Pavement distress detection methods: A review. Infrastructures, 2018, vol. 3, no. 4, pp. 58. https://doi.org/10.3390/infrastructures3040058

55. Wang X., Al-Shabbani Z., Sturgill R., Kirk A., Dadi G.B. Estimating earthwork volumes through use of unmanned aerial systems. Transportation Research Record, 2017, vol. 2630, pp. 1–8. https://doi.org/10.3141/2630-01

56. Tahar K.N., Ahmad A., Akib W.A.A.W.M., Mohd W.M.N.W. A generic approach for photogrammetric survey using a six-rotor unmanned aerial vehicle. IOP Conference Series: Earth and Environmental Science, 2014, vol. 18, no. 1, pp. 012003 https://doi.org/10.1088/1755-1315/18/1/012003

57. Abd Mukti S.N., Tahar K.N. Low altitude photogrammetry for urban road mapping. Built Environment Journal, 2021, vol. 18, no. 1, pp. 31. https://doi.org/10.24191/bej.v18i1.10205

58. Slimane A.B., Khoudeir M., Brochard J., Do M.T. Characterization of road microtexture by means of image analysis. Wear, 2008, vol. 264, no. 5–6, pp. 464–468. https://doi.org/10.1016/j.wear.2006.08.045

59. Jog G.M., Koch C., Golparvar-Fard M., Brilakis I. Pothole properties measurement through visual 2D recognition and 3D reconstruction. Proc. of the ASCE International Conference on Computing in Civil E n g i n e e r i n g , 2 0 1 2 , p p . 5 5 3 – 5 6 0 . h t t p s : / / d o i .org/10.1061/9780784412343.0070

60. Saad A.M., Tahar K.N. Identification of rut and pothole by using multirotor unmanned aerial vehicle (UAV). Measurement: Journal of the International Measurement Confederation, 2019, vol. 137, pp. 647–654. https://doi.org/10.1016/j.measurement.2019.01.093

61. Biçici S., Zeybek M. An approach for the automated extraction of road surface distress from a UAV-derived point cloud. Automation in Construction, 2021, vol. 122, pp. 103475. https://doi.org/10.1016/j.autcon.2020.103475


Рецензия

Для цитирования:


Абд Мукти Ш.Н., Тахар Х.Н. Обнаружения выбоин на дорожных покрытиях с использованием методов фотограмметрии и дистанционного зондирования (обзор). Научно-технический вестник информационных технологий, механики и оптики. 2022;22(3):459-471. https://doi.org/10.17586/2226-1494-2022-22-3-459-471

For citation:


Abd Mukti Sh.N., Tahar Kh.N. Detection of potholes on road surfaces using photogrammetry and remote sensing methods (review). Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(3):459-471. https://doi.org/10.17586/2226-1494-2022-22-3-459-471

Просмотров: 10


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)