Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Determination of the electron distribution in thin barrier AlGaAs/GaAs superlattices by capacitance-voltage profiling

https://doi.org/10.17586/2226-1494-2022-22-6-1092-1097

Abstract

Electron density distribution in uniformly doped AlGaAs/GaAs superlattices with respective layer thicknesses 1.5/10 nm and a different number of quantum wells was investigated. Experimental samples containing 3, 5 and 25 periods with the same layer parameters were grown by molecular beam epitaxy. Capacitance-voltage profiling was used to determine the carrier concentration profiles in the structures both numerically and experimentally. During the analysis of experimental capacitance-voltage characteristics it was found that the maximum electron concentration increases with an increase in the number of quantum wells starting from 7,1∙1016 сm–3 for 3 wells up to 9,2∙1016 сm–3 for 25 wells with overall superlattice doping level of 1017 сm–3. In some samples saturation areas are observed on the concentration profiles, that are associated with the region of superlattice. Concentration values, obtained from computer modeling, correspond to the experimental data with an error of less than 10 %. Capacitance-voltage profiling is a suitable technique for determining the carrier concentration profiles in thin barrier superlattices. Despite the fact that the method provides distribution of the «apparent» carrier concentration profile, it can be used to estimate the dopant atoms distribution in the strongly coupled quantum well heterostructures.

About the Authors

E. I. Vasilkova
Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences
Russian Federation

Elena I. Vasilkova – Engineer

Saint Petersburg, 194021

sc 57433507900



E. V. Pirogov
Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences
Russian Federation

Evgeny V. Pirogov – Junior Researcher

Saint Petersburg, 194021

sc 24468711600



M. S. Sobolev
Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences
Russian Federation

Maxim S. Sobolev – PhD (Physics & Mathematics), Scientific
Researcher, Head of Laboratory

Saint Petersburg, 194021

sc 57205203666



A. I. Baranov
Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences
Russian Federation

Artem I. Baranov – PhD (Physics & Mathematics), Junior Researcher

Saint Petersburg, 194021

sc 57195761820



A. S. Gudovskikh
Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences; Saint Petersburg Electrotechnical University «LETI»
Russian Federation

Alexander S. Gudovskikh – D. Sc., Leading Researcher; Professor

Saint Petersburg, 194021;

Saint Petersburg, 197022

sc 6602958574



A. D. Bouravleuv
Saint Petersburg Electrotechnical University «LETI»; University under the Inter-Parliamentary Assembly of EurAsEC; Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Alexei D. Bouravleuv – D. Sc. (Physics & Mathematics), Head of Laboratory; Professor; Leading Researcher

Saint Petersburg, 197022;

Saint Petersburg, 194044;

Saint Petersburg, 198095



References

1. Del Alamo J.A. Nanometre-scale electronics with III–V compound semiconductors. Nature, 2011, vol. 479, no. 7373, pp. 317–323. https://doi.org/10.1038/nature10677

2. Fox M., Ispasoiu R. Quantum wells, superlattices, and band-gap engineering. Springer Handbook of Electronic and Photonic Materials. Cham, Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-48933-9_40

3. Goray L., Pirogov E., Sobolev M., Ilkiv I., Dashkov A., Nikitina E., Ubyivovk E., Gerchikov L., Ipatov A., Vainer Y., Svechnikov M., Yunin P., Chkhalo N., Bouravlev A. Matched characterization of super-multiperiod superlattices. Journal of Physics D: Applied Physics, 2020, vol. 53, no. 45, pp. 455103. https://doi.org/10.1088/1361-6463/aba4d6

4. Mokhov D.V., Berezovskaya T.N., Kuzmenkov A.G., Maleev N.A., Timoshnev S.N., Ustinov V.M. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers. Technical Physics Letters, 2017, vol. 43, no. 10, pp. 909–911. https://doi.org/10.1134/S1063785017100091

5. Schroder D.K. Semiconductor Material and Device Characterization. 3rd ed. Piscataway, Hoboken, NJ, Wiley-IEEE Press, 2015, 800 с.

6. Tschirner B.M., Morier-Genoud F., Martin D., Reinhart F.K. Capacitance-voltage profiling of quantum well structures. Journal of Applied Physics, 1996, vol. 79, no. 9, pp. 7005–7013. https://doi.org/10.1063/1.361466

7. Bobylev B.A., Kovalevskaja T.E., Marchishin I.V., Ovsyuk V.N. Capacitance-voltage profiling of multiquantum well structures. Solid-State Electronics, 1997, vol. 41, no. 3, pp. 481–486. https://doi.org/10.1016/S0038-1101(96)00186-4

8. Chiquito A.J., Pusep Yu.A., Mergulhão S., Galzerani J.C. Carrier confinement in an ultrathin barrier GaAs/AlAs superlattice probed by capacitance-voltage measurements. Physica E: Low-dimensional Systems and Nanostructures, 2002, vol. 13, no. 1, pp. 36–42. https://doi.org/10.1016/S1386-9477(01)00222-3

9. Gerchikov L.G., Dashkov A.S., Goray L.I., Bouravleuv A.D. Development of the design of super-multiperiod structures grown by molecular-beam epitaxy and emitting in the terahertz range. Journal of Experimental and Theoretical Physics, 2021, vol. 133, no. 2, pp. 161–168. https://doi.org/10.1134/S1063776121070037

10. Varache R., Leendertz C., Gueunier-Farret M.E., Haschke J., Muñoz D., Korte L. Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Solar Energy Materials and Solar Cells, 2015, vol. 141, pp. 14–23. https://doi.org/10.1016/j.solmat.2015.05.014


Review

For citations:


Vasilkova E.I., Pirogov E.V., Sobolev M.S., Baranov A.I., Gudovskikh A.S., Bouravleuv A.D. Determination of the electron distribution in thin barrier AlGaAs/GaAs superlattices by capacitance-voltage profiling. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(6):1092-1097. (In Russ.) https://doi.org/10.17586/2226-1494-2022-22-6-1092-1097

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)