Метод генерации анимации цифрового аватара с речевой и невербальной синхронизацией на основе бимодальных данных
https://doi.org/10.17586/2226-1494-2025-25-4-651-662
Аннотация
Введение. Рассмотрена задача генерации анимации цифрового аватара с синхронным воспроизведением речи, мимики и жестикуляции на основе бимодального входа — статического изображения и текста с эмоциональной окраской. Исследована возможность интеграции акустических, визуальных и аффективных признаков в единую модель, обеспечивающую реалистичное и выразительное поведение аватара в соответствии с содержанием и эмоциональным тоном высказывания.
Метод. Предложенный метод включает шаги извлечения визуальных ориентиров лица, рук и позы, определения пола для выбора подходящего голосового профиля, анализа текста на предмет эмоционального содержания и генерации синтетической аудиоречи. Все признаки интегрируются в генеративной архитектуре на основе диффузионной модели с механизмами временного внимания и межмодального согласования. Это обеспечивает высокую точность синхронизации между речью и невербальными компонентами поведения аватара. Для обучения использовались два специализированных корпуса: один для моделирования жестикуляции, другой — для мимики. Аннотирование производилось средствами автоматического извлечения пространственных ориентиров.
Основные результаты. Экспериментальное исследование метода выполнялось на многопроцессорной вычислительной платформе с графическими ускорителями. Качество работы модели оценивалось с помощью объективных метрик. Метод показал высокую степень визуального и семантического соответствия: FID — 50,13; FVD — 601,70; SSIM — 0,752; PSNR — 21,997; E-FID — 2,226; Sync-D — 7,003; Sync-C — 6,398. Модель успешно синхронизирует речь с мимикой и жестами, учитывает эмоциональный контекст текста, а также особенности русского жестового языка.
Обсуждение. Результаты работы могут найти применение в системах эмоционально-чувствительного человеко-машинного взаимодействия, цифровых ассистентах, образовательных и психологических интерфейсах. Предложенный метод представляет интерес для специалистов в области искусственного интеллекта, мультимодальных интерфейсов, компьютерной графики и цифровой психологии.
Ключевые слова
Об авторах
А. А. АксёновРоссия
Александр Александрович Аксёнов, кандидат технических наук, старший научный сотрудник
199178; Санкт-Петербург
sc 57203963345
Е. В. Рюмина
Россия
Елена Витальевна Рюмина, младший научный сотрудник
199178; Санкт-Петербург
sc 57220572427
Д. А. Рюмин
Россия
Дмитрий Александрович Рюмин, кандидат технических наук, старший научный сотрудник
199178; Санкт-Петербург
sc 57191960214
Список литературы
1. Sincan O.M., Keles H.Y. AUTSL: A Large Scale Multi-Modal Turkish Sign Language Dataset and Baseline Methods // IEEE Access. 2020. V. 8 . P. 181340–181355. doi: 10.1109/ACCESS.2020.3028072
2. Kapitanov A., Kvanchiani K., Nagaev A., Kraynov R., Makhliarchuk A. H aGRID-HAnd Gesture Recognition Image Dataset // Proc. of the Winter Conference on Applications of Computer Vision (WACV). 2024. P. 4560–4569. doi: 10.1109/WACV57701.2024.00451
3. Busso C., Bulut M., Lee C.C., Kazemzadeh A., Mower E., Kim S., Chang J., Lee S., Narayanan S.S. IEMOCAP: interactive emotional dyadic motion capture database // Language Resources and Evaluation. 2008. V. 42. N 4. P. 335–359. doi: 10.1007/s10579-008-9076-6
4. Shen K., Guo C., Kaufmann M., Zarate J., Valentin J., Song J., Hilliges O. X-Avatar: expressive human avatars // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2023. P. 16911–16921. doi: 10.1109/CVPR52729.2023.01622
5. Zhang H., Chen B., Yang H., Qu L., Wang X., Chen L., Long C., Zhu F., Du D., Zheng M. AvatarVerse: high-quality and stable 3D avatar creation from text and pose // Proc. of the AAAI Conference on Artificial Intelligence. 2024. V. 38. N 7. P. 7124–7132. doi: 10.1609/aaai.v38i7.28540
6. Kim K., Song B. Robust 3D human avatar reconstruction from monocular videos using depth optimization and camera pose estimation // IEEE Access. 2025. V. 13. P. 57886–57897. doi: 10.1109/ACCESS.2025.3556445
7. Yuan Y., Li X., Huang Y., De Mello S., Nagano K., Kautz J., Iqbal U. Gavatar: animatable 3D gaussian avatars with implicit mesh learning // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024. P. 896–905. doi: 10.1109/CVPR52733.2024.00091
8. Teotia K., Mallikarjun B.R., Pan X., Kim H., Garrido P., Elgharib M., Theobalt C. HQ3DAvatar: high-quality implicit 3D head avatar // ACM Transactions on Graphics. 2024. V. 43. N 3. P 1–24. doi: 10.1145/3649889
9. Yang L., Zhang Z., Song Y., Hong S., Xu R., Zhao Y., Zhang W., Cui B., Yang M. Diffusion models: a comprehensive survey of methods and applications // ACM Computing Surveys. 2023. V. 56. N 4. P. 1–39. doi: 10.1145/3626235
10. Karras J., Holynski A., Wang T., Kemelmacher-Shlizerman I. DreamPose: fashion image-to-video synthesis via stable diffusion // Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV). 2023. P. 22623–22633. doi: 10.1109/ICCV51070.2023.02073
11. Huang Z., Tang F., Zhang Y., Cun X., Cao J., Li J., Lee T. Make-Your-Anchor: a diffusion-based 2D avatar generation framework // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024. P. 6997–7006. doi: 10.1109/CVPR52733.2024.00668
12. Blattmann A., Dockhorn T., Kulal S., Mendelevitch D., Kilian M., Lorenz D., Levi Y., English Z., Voleti V., Letts A., Jampani V., Rombach R. Stable video diffusion: scaling latent video diffusion models to large datasets // arXiv. 2023. arXiv:2311.15127. doi: 10.48550/arXiv.2311.15127
13. Zhang L., Rao A., Agrawala M. Adding conditional control to text-to-image diffusion models // Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV). 2023. P. 3813–3824. doi: 10.1109/ICCV51070.2023.00355
14. Zhuang S., Li K., Chen X., Wang Y., Liu Z., Qiao Y., Wang Y. Vlogger: make your dream a vlog // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024. P. 8806–8817. doi: 10.1109/CVPR52733.2024.00841
15. Xu M., Li H., Su Q., Shang H., Zhang L., Liu C., Wang J., Yao Y., Zhu S. Hallo: hierarchical audio-driven visual synthesis for portrait image animation // arXiv. 2024. arXiv:2406.08801. doi: 10.48550/arXiv.2406.08801
16. Yang S., Li H., Wu J., Jing M., Li L., Ji R., Liang J., Fan H., Wang J. MegActor-Sigma: unlocking flexible mixed-modal control in portrait animation with diffusion transformer // Proc. of the AAAI Conference on Artificial Intelligence. 2025. V. 39. N 9. P. 9256–9264. doi: 10.1609/aaai.v39i9.33002
17. Lin G., Jiang J., Liang C., Zhong T., Yang J., Zheng Y. CyberHost: taming audio-driven avatar diffusion model with region codebook attention // arXiv. 2024. arXiv:2409.01876. doi: 10.48550/arXiv.2409.01876
18. Chen Z., Cao J., Chen Z., Li Y., Ma C. EchoMimic: lifelike audio-driven portrait animations through editable landmark conditions // Proc. of the AAAI Conference on Artificial Intelligence. 2025. V. 39. N 3. P. 2403–2410. doi: 10.1609/aaai.v39i3.32241
19. Serengil S., Özpınar A. A benchmark of facial recognition pipelines and co-usability performances of modules // Bilişim Teknolojileri Dergisi. 2024. V. 17. N 2. P. 95–107. doi: 10.17671/gazibtd.1399077
20. Bazarevsky V., Kartynnik Y., Vakunov A., Raveendran K., Grundmann M. Blazeface: sub-millisecond seural face detection on mobile GPUs // arXiv. 2019. arXiv:1907.05047. doi: 10.48550/arXiv.1907.05047
21. Zhang F., Bazarevsky V., Vakunov A., Tkachenka A., Sung G., Chang C.L., Grundmann M. MediaPipe hands: on-device real-time hand tracking // arXiv. 2020. arXiv:2006.10214. doi: 10.48550/arXiv.2006.10214
22. Bazarevsky V., Grishchenko I., Raveendran K., Zhu T., Zhang F., Grundmann M. BlazePose: on-device real-time body pose tracking // arXiv. 2020. arXiv:2006.10204. doi: 10.48550/arXiv.2006.10204
23. Xu J., Zou X., Huang K., Chen Y., Liu B., Cheng M., Shi X., Huang J. EasyAnimate: a high-performance long video generation method based on transformer Architecture // arXiv. 2024. arXiv:2405.18991. doi: 10.48550/arXiv.2405.18991
24. Hu L. Animate anyone: consistent and controllable image-to-video synthesis for character animation // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024. P. 8153–8163. doi: 10.1109/CVPR52733.2024.00779
25. Ryumina E., Ryumin D., Axyonov A., Ivanko D., Karpov A. Multicorpus emotion recognition method based on cross-modal gated attention fusion // Pattern Recognition Letters. 2025. V. 190. P. 192–200. doi: 10.1016/j.patrec.2025.02.024
26. Peng Y., Sudo Y., Shakeel M., Watanabe S. OWSM-CTC: an open encoder-only speech foundation model for speech recognition, translation, and language identification // Proc. of the 62<sup>nd</sup> Annual Meeting of the Association for Computational Linguistics. 2024. V. 1. P. 10192–10209. doi: 10.18653/v1/2024.acl-long.549
27. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A., Kaiser L., Polosukhin I. Attention is all you need // Proc. of the Advances in Neural Information Processing Systems 30 (NIPS 2017). 2017. P. 1–11.
28. Kapitanov A., Kvanchiani K., Nagaev A., Petrova E. Slovo: Russian sign language dataset // Lecture Notes in Computer Science. 2023. V. 14253. P. 63–73. doi: 10.1007/978-3-031-44137-0_6
29. Xie L., Wang X., Zhang H., Dong C., Shan Y. VFHQ: a high-quality dataset and benchmark for video face super-resolution // IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022. P. 657–665. doi: 10.1109/CVPRW56347.2022.00081
30. Kagirov I., Ivanko D., Ryumin D., Axyonov A., Karpov A. TheRuSLan: database of russian sign language // Proc. of the12<sup>th</sup> Conference on Language Resources and Evaluatio (LREC). 2020. P. 6079–6085.
31. Кагиров И.А., Рюмин Д.А., Аксенов А.А., Карпов А.А. Мультимедийная база данных жестов русского жестового языка в трехмерном формате // Вопросы языкознания. 2020. № 1. С. 104-123. doi: 10.31857/S0373658X0008302-1
32. Axyonov A., Ryumin D., Ivanko D., Kashevnik A., Karpov A. Audio-visual speech recognition in-the-wild: multi-angle vehicle cabin corpus and attention-based method // Proc. of the 49<sup>th</sup> IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 2024. P. 8195–8199. doi: 10.1109/ICASSP48485.2024.10448048
33. Liu Z. Super Convergence cosine annealing with warm-up learning rate // Proc. of the 2<sup>nd</sup> International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA). 2022. P. 1–7.
34. Wang P., Shen L., Tao Z., He S., Tao D. Generalization analysis of stochastic weight averaging with general sampling // Proc. of the 41<sup>st</sup> International Conference on Machine Learning (ICML). 2024. P. 51442–51464.
35. Yang H., Zhang Z., Tang H., Qian J., Yang J. ConsistentAvatar: learning to diffuse fully consistent talking head avatar with temporal guidance // Proc. of the 32<sup>nd</sup> ACM International Conference on Multimedia.2024. P. 3964–3973. doi: 10.1145/3664647.3680619
36. Unterthiner T., Van Steenkiste S., Kurach K., Marinier R., Michalski M., Gelly S. Towards accurate generative models of video: a new metric and challenges // arXiv. 2018. arXiv:1812.01717. doi: 10.48550/arXiv.1812.01717
37. Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: from error visibility to structural similarity // IEEE Transactions on Image Processing. 2004. V. 13. N 4. P. 600–612. doi: 10.1109/TIP.2003.819861
38. Hore A., Ziou D. Image quality metrics: PSNR vs. SSIM // Proc. of the 20<sup>th</sup> International Conference on Pattern Recognition. 2010. P. 2366–2369. doi: 10.1109/ICPR.2010.579
39. Deng Y., Yang J., Xu S., Chen D., Jia Y., Tong X. Accurate 3D face reconstruction with weakly-supervised learning: from single image to image set // Proc. of the 32<sup>nd</sup> IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. P. 285–295. doi: 10.1109/CVPRW.2019.00038
40. Prajwal K.R., Mukhopadhyay R., Namboodiri V.P., Jawahar C.V. A lip sync expert is all you need for speech to lip generation in the wild // Proc. of the 28<sup>th</sup> ACM International Conference on Multimedia. 2020. P. 484–492. doi: 10.1145/3394171.3413532
Рецензия
Для цитирования:
Аксёнов А.А., Рюмина Е.В., Рюмин Д.А. Метод генерации анимации цифрового аватара с речевой и невербальной синхронизацией на основе бимодальных данных. Научно-технический вестник информационных технологий, механики и оптики. 2025;25(4):651-662. https://doi.org/10.17586/2226-1494-2025-25-4-651-662
For citation:
Axyonov A.A., Ryumina E.V., Ryumin D.A. A method for generating digital avatar animation with speech and non-verbal synchronization based on bimodal data. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(4):651-662. (In Russ.) https://doi.org/10.17586/2226-1494-2025-25-4-651-662